14 research outputs found

    T-lex3 : An accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data

    Get PDF
    Motivation: Transposable elements (TEs) constitute a significant proportion of the majority of genomes sequenced to date. TEs are responsible for a considerable fraction of the genetic variation within and among species. Accurate genotyping of TEs in genomes is therefore crucial for a complete identification of the genetic differences among individuals, populations and species. Results: In this work, we present a new version of T-lex, a computational pipeline that accurately genotypes and estimates the population frequencies of reference TE insertions using short-read high-throughput sequencing data. In this new version, we have re-designed the T-lex algorithm to integrate the BWA-MEM short-read aligner, which is one of the most accurate short-read mappers and can be launched on longer short-reads (e.g. reads >150 bp). We have added new filtering steps to increase the accuracy of the genotyping, and new parameters that allow the user to control both the minimum and maximum number of reads, and the minimum number of strains to genotype a TE insertion. We also showed for the first time that T-lex3 provides accurate TE calls in a plant genome. Availability and implementation: To test the accuracy of T-lex3, we called 1630 individual TE insertions in Drosophila melanogaster, 1600 individual TE insertions in humans, and 3067 individual TE insertions in the rice genome. We showed that this new version of T-lex is a broadly applicable and accurate tool for genotyping and estimating TE frequencies in organisms with different genome sizes and different TE contents. T-lex3 is available at Github: https://github.com/GonzalezLab/T-lex3

    Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses

    Get PDF
    Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.Publisher PDFPeer reviewe

    Drosophila evolution over space and time (DEST):A new population genomics resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of Münster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe

    Corrigendum to: Drosophila Evolution over Space and Time (DEST): a New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of Münster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe

    Identification of environmental variables in Drosophila melanogaster natural populations

    No full text
    Entender cómo las especies se adaptan al ambiente es aún una pregunta sin resolver en el campo de la Biología Evolutiva. Mientras el foco principal siempre ha estado en la base genética, los factores ambientales responsables de dichos procesos adaptativos se quedan por detrás. Nuestro objetivo principal es identificar las principales variables ambientales que contribuyen a la adaptación. Utilizamos poblaciones naturales de D. melanogaster de Europa y Norte América, y analizamos tanto SNPs como elementos transponibles (TEs). Para detectar y estimar las frecuencias de una población con precisión, actualizamos el algoritmo de T-lex y lanzamos una nueva versión: T-lex3. Realizamos un análisis de Asociación GenomaAmbiente (GEA) para awsociar las frecuencias alélicas de TEs y SNPs con las diferentes variables ambientales, e identificamos temperatura, lluvia y viento, como las variables más relevantes implicadas en la adaptación ambiental. Tambien encontramos 10 TEs asociados con al menos, una variable ambiental. Finalmente, desarrollamos una herramienta bioinfórmatica para integrar más de 200 genomas de D. melanogaster de todo el mundo, lo que facilitará los análisis ambientales espacial y temporalmente.Understanding how species adapt to the environment is still an open question in Evolutionary Biology. While the focus has been on the genetic basis, the analysis of the environmental factors which drive these adaptive processes lags behind. Our main goal is to identify the main environmental variables that contribute to adaptation. We used natural D. melanogaster populations from Europe and North America, and analyzed both SNPs and transposable elements (TEs). To accurately detect and estimate TE population frequencies, we updated the T-lex algorithm and released a new version: T-lex3. We performed a Genome-Environment Analysis (GEA) to associate TEs and SNP allele frequencies with several environmental variables, and we identified temperature, rainfall and wind as the relevant variables involved in environmental adaptation. In addition, we found 10 TEs associated with an environmental variable. Finally, we developed a bioinformatic pipeline that integrates >200 D. melanogaster world-wide genomes, which will facilitate environmental analysis in space and time

    Temperature, rainfall and wind variables underlie environmental adaptation in natural populations of Drosophila melanogaster

    No full text
    International audienceWhile several studies in a diverse set of species have shed light on the genes underlying adaptation, our knowledge on the selective pressures that explain the observed patterns lags behind. Drosophila melanogaster is a valuable organism to study environmental adaptation because this species originated in Southern Africa and has recently expanded worldwide, and also because it has a functionally well-annotated genome. In this study, we aimed to decipher which environmental variables are relevant for adaptation of D. melanogaster natural populations in Europe and North America. We analysed 36 whole-genome pool-seq samples of D. melanogaster natural populations collected in 20 European and 11 North American locations. We used the BayPass software to identify single nucleotide polymorphisms (SNPs) and transposable elements (TEs) showing signature of adaptive differentiation across populations, as well as significant associations with 59 environmental variables related to temperature, rainfall, evaporation, solar radiation, wind, daylight hours, and soil type. We found that in addition to temperature and rainfall, wind related variables are also relevant for D. melanogaster environmental adaptation. Interestingly, 23%-51% of the genes that showed significant associations with environmental variables were not found overly differentiated across populations. In addition to SNPs, we also identified 10 reference transposable element insertions associated with environmental variables. Our results showed that genome-environment association analysis can identify adaptive genetic variants that are undetected by population differentiation analysis while also allowing the identification of candidate environmental drivers of adaptation

    Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource

    Full text link
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail

    T-lex3 : An accurate tool to genotype and estimate population frequencies of transposable elements using the latest short-read whole genome sequencing data

    No full text
    Motivation: Transposable elements (TEs) constitute a significant proportion of the majority of genomes sequenced to date. TEs are responsible for a considerable fraction of the genetic variation within and among species. Accurate genotyping of TEs in genomes is therefore crucial for a complete identification of the genetic differences among individuals, populations and species. Results: In this work, we present a new version of T-lex, a computational pipeline that accurately genotypes and estimates the population frequencies of reference TE insertions using short-read high-throughput sequencing data. In this new version, we have re-designed the T-lex algorithm to integrate the BWA-MEM short-read aligner, which is one of the most accurate short-read mappers and can be launched on longer short-reads (e.g. reads >150 bp). We have added new filtering steps to increase the accuracy of the genotyping, and new parameters that allow the user to control both the minimum and maximum number of reads, and the minimum number of strains to genotype a TE insertion. We also showed for the first time that T-lex3 provides accurate TE calls in a plant genome. Availability and implementation: To test the accuracy of T-lex3, we called 1630 individual TE insertions in Drosophila melanogaster, 1600 individual TE insertions in humans, and 3067 individual TE insertions in the rice genome. We showed that this new version of T-lex is a broadly applicable and accurate tool for genotyping and estimating TE frequencies in organisms with different genome sizes and different TE contents. T-lex3 is available at Github: https://github.com/GonzalezLab/T-lex3
    corecore